On the $$L_p$$-Brunn–Minkowski and Dimensional Brunn–Minkowski Conjectures for Log-Concave Measures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Inequalities for Gaussian and Log-Concave Probability Measures

We give three proofs of a functional inequality for the standard Gaussian measure originally due to William Beckner. The first uses the central limit theorem and a tensorial property of the inequality. The second uses the Ornstein-Uhlenbeck semigroup, and the third uses the heat semigroup. These latter two proofs yield a more general inequality than the one Beckner originally proved. We then ge...

متن کامل

Small ball probability estimates for log-concave measures

We establish a small ball probability inequality for isotropic log-concave probability measures: there exist absolute constants c1, c2 > 0 such that if X is an isotropic log-concave random vector in R with ψ2 constant bounded by b and if A is a non-zero n × n matrix, then for every ε ∈ (0, c1) and y ∈ R, P (‖Ax− y‖2 6 ε‖A‖HS) 6 ε ` c2 b ‖A‖HS ‖A‖op ́2 , where c1, c2 > 0 are absolute constants.

متن کامل

A NOTE ON AN LP-BRUNN-MINKOWSKI INEQUALITY FOR CONVEX MEASURES IN THE UNCONDITIONAL CASE By

We consider a different L-Minkowski combination of compact sets in R than the one introduced by Firey and we prove an L-BrunnMinkowski inequality, p ∈ [0, 1], for a general class of measures called convex measures that includes log-concave measures, under unconditional assumptions. As a consequence, we derive concavity properties of the function t 7→ μ(t 1 pA), p ∈ (0, 1], for unconditional con...

متن کامل

A note on an L-Brunn-Minkowski inequality for convex measures in the unconditional case

We consider a different L-Minkowski combination of compact sets in R than the one introduced by Firey and we prove an L-BrunnMinkowski inequality, p ∈ [0, 1], for a general class of measures called convex measures that includes log-concave measures, under unconditional assumptions. As a consequence, we derive concavity properties of the function t 7→ μ(t 1 pA), p ∈ (0, 1], for unconditional con...

متن کامل

Valuations on Log-Concave Functions

A classification of SL(n) and translation covariant Minkowski valuations on log-concave functions is established. The moment vector and the recently introduced level set body of log-concave functions are characterized. Furthermore, analogs of the Euler characteristic and volume are characterized as SL(n) and translation invariant valuations on log-concave functions. 2000 AMS subject classificat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Geometric Analysis

سال: 2020

ISSN: 1050-6926,1559-002X

DOI: 10.1007/s12220-020-00505-z